Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex.
نویسندگان
چکیده
Energy-dependent quenching of excitons in photosystem II of plants, or qE, has been positively correlated with the transient production of carotenoid radical cation species. Zeaxanthin was shown to be the donor species in the CP29 antenna complex. We report transient absorbance analyses of CP24 and CP26 complexes that bind lutein and zeaxanthin in the L1 and L2 domains, respectively. For CP24 complexes, the transient absorbance difference profiles give a reconstructed transient absorbance spectrum with a single peak centered at approximately 980 nm, consistent with zeaxanthin radical cation formation. In contrast, CP26 gives constants for the decay components probed at 940 and 980 nm of 144 and 194 ps, a transient absorbance spectrum that has a main peak at 980 nm, and a substantial shoulder at 940 nm. This suggests the presence of two charge transfer quenching sites in CP26 involving zeaxanthin radical cation and lutein radical cation species. We also show that lutein radical cation formation in CP26 is dependent on binding of zeaxanthin to the L2 domain, implying that zeaxanthin acts as an allosteric effector of charge transfer quenching involving lutein in the L1 domain.
منابع مشابه
Minor complexes at work: light-harvesting by carotenoids in the photosystem II antenna complexes CP24 and CP26.
Plant photosynthesis relies on the capacity of chlorophylls and carotenoids to absorb light. One of the roles of carotenoids is to harvest green-blue light and transfer the excitation energy to the chlorophylls. The corresponding dynamics were investigated here for the first time, to our knowledge, in the CP26 and CP24 minor antenna complexes. The results for the two complexes differ substantia...
متن کاملPhotochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26.
The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xa...
متن کاملphotosynthetic functions of alpha- and beta-xanthophylls 1 DIFFERENT ROLES OF ALPHA- AND BETA-BRANCH XANTHOPHYLLS IN PHOTOSYSTEM ASSEMBLY AND PHOTOPROTECTION
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynth...
متن کاملDifferent roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection.
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosyn...
متن کاملSingle Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory
We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 5 شماره
صفحات -
تاریخ انتشار 2009